首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Neural Network-Based Filter Design for Nonlinear Systems With Multiple Constraints
【24h】

Adaptive Neural Network-Based Filter Design for Nonlinear Systems With Multiple Constraints

机译:具有多个约束的非线性系统的自适应神经网络滤波器设计

获取原文
获取原文并翻译 | 示例

摘要

Filter design for nonlinear systems, especially time delayed nonlinear systems, has always been an important and challenging problem. This brief investigates the filter design problem of nonlinear systems with multiple constraints: time delay, actuator, and sensor faults, and a new adaptive neural network-based filter design method is proposed. Comparing with the existing works where there is a shortcoming that the designed filters contain unknown time delay(s), the design method proposed in this brief overcomes the shortcoming and only the estimation of the unknown time delay exists in the filter. Furthermore, not only the system states can be estimated, but also the unknown time delay with actuator and sensor faults can be estimated in this brief. Finally, simulation results are given to show the effectiveness of the proposed new design method.
机译:用于非线性系统的过滤器设计,特别是延迟非线性系统的时间,一直是一个重要且挑战的问题。 本简要介绍多个约束的非线性系统的过滤器设计问题:时间延迟,执行器和传感器故障,提出了一种新的自适应神经网络的滤波器设计方法。 与现有的作品相比,存在设计过滤器包含未知时间延迟的缺点,本简要提出的设计方法克服了缺点,并且仅存在未知时间延迟的估计。 此外,不仅可以估计系统状态,而且还可以在此简介中估计执行器和传感器故障的未知时间延迟。 最后,给出了仿真结果表明所提出的新设计方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号