首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Neural-Network-Based Event-Triggered Adaptive Control of Nonaffine Nonlinear Multiagent Systems With Dynamic Uncertainties
【24h】

Neural-Network-Based Event-Triggered Adaptive Control of Nonaffine Nonlinear Multiagent Systems With Dynamic Uncertainties

机译:基于神经网络的事件触发的非共源非线性多算系统的自适应控制,具有动态不确定性

获取原文
获取原文并翻译 | 示例

摘要

This article addresses the adaptive event-triggered neural control problem for nonaffine pure-feedback nonlinear multiagent systems with dynamic disturbance, unmodeled dynamics, and dead-zone input. Radial basis function neural networks are applied to approximate the unknown nonlinear function. A dynamic signal is constructed to deal with the design difficulties in the unmodeled dynamics. Moreover, to reduce the communication burden, we propose an event-triggered strategy with a varying threshold. Based on the Lyapunov function method and adaptive neural control approach, a novel event-triggered control protocol is constructed, which realizes that the outputs of all followers converge to a neighborhood of the leader's output and ensures that all signals are bounded in the closed-loop system. An illustrative simulation example is applied to verify the usefulness of the proposed algorithms.
机译:本文涉及具有动态干扰,未铭出动力学和死区输入的非共源纯反馈非线性多向系统的自适应事件触发的神经控制问题。 径向基函数神经网络被应用于近似未知的非线性函数。 构建动态信号以处理未拼接动态中的设计困难。 此外,为了减少沟通负担,我们提出了一种具有不同阈值的事件触发的策略。 基于Lyapunov功能方法和自适应神经控制方法,构建了一种新的事件触发的控制协议,这意识到所有追随者的输出都会收敛到领导者的输出的邻域,并确保所有信号都在闭环中界定了所有信号 系统。 应用说明性仿真示例以验证所提出的算法的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号