首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Learning Framework for n-Bit Quantized Neural Networks Toward FPGAs
【24h】

A Learning Framework for n-Bit Quantized Neural Networks Toward FPGAs

机译:对FPGA的N位量化神经网络的学习框架

获取原文
获取原文并翻译 | 示例

摘要

The quantized neural network (QNN) is an efficient approach for network compression and can be widely used in the implementation of field-programmable gate arrays (FPGAs). This article proposes a novel learning framework for n-bit QNNs, whose weights are constrained to the power of two. To solve the gradient vanishing problem, we propose a reconstructed gradient function for QNNs in the back-propagation algorithm that can directly get the real gradient rather than estimating an approximate gradient of the expected loss. We also propose a novel QNN structure named n-BQ-NN, which uses shift operation to replace the multiply operation and is more suitable for the inference on FPGAs. Furthermore, we also design a shift vector processing element (SVPE) array to replace all 16-bit multiplications with SHIFT operations in convolution operation on FPGAs. We also carry out comparable experiments to evaluate our framework. The experimental results show that the quantized models of ResNet, DenseNet, and AlexNet through our learning framework can achieve almost the same accuracies with the original full-precision models. Moreover, when using our learning framework to train our n-BQ-NN from scratch, it can achieve state-of-the-art results compared with typical low-precision QNNs. Experiments on Xilinx ZCU102 platform show that our n-BQ-NN with our SVPE can execute 2.9 times faster than that with the vector processing element (VPE) in inference. As the SHIFT operation in our SVPE array will not consume digital signal processing (DSP) resources on FPGAs, the experiments have shown that the use of SVPE array also reduces average energy consumption to 68.7% of the VPE array with 16 bit.
机译:量化的神经网络(QNN)是网络压缩的有效方法,并且可以广泛用于现场可编程门阵列(FPGA)的实现。本文提出了一种新的N位QNN学习框架,其权重被限制为两个。为了解决梯度消失问题,我们提出了在后传播算法中的QNN的重建梯度函数,可以直接获得真实梯度而不是估计预期损失的近似梯度。我们还提出了一种名为N-BQ-NN的新型QNN结构,其使用换档操作来更换乘法操作,更适合于对FPGA的推断。此外,我们还设计了一个移位矢量处理元件(SVPE)阵列,以替换所有16位乘法,在FPGA上的卷积操作中的换档操作。我们还对评估我们的框架进行了可比实验。实验结果表明,Reset,DenSenet和AlexNet的量化模型通过我们的学习框架可以实现与原始的全精密型号几乎相同的准确性。此外,在使用我们的学习框架培训我们的N-BQ-NN的划痕时,它可以实现最先进的结果与典型的低精度QNN相比。 Xilinx ZCU102平台上的实验表明,我们的N-BQ-NN与我们的SVPE可以比推断的矢量处理元件(VPE)快2.9倍。随着SVPE阵列中的换档操作不会在FPGA上消耗数字信号处理(DSP)资源,实验表明,使用SVPE阵列的使用也将平均能耗降低到具有16位的VPE阵列的68.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号