首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Fast Algorithms for Quaternion-Valued Convolutional Neural Networks
【24h】

Fast Algorithms for Quaternion-Valued Convolutional Neural Networks

机译:四元值卷积神经网络的快速算法

获取原文
获取原文并翻译 | 示例

摘要

In this article, we analyze algorithmic ways to reduce the arithmetic complexity of calculating quaternion-valued linear convolution and also synthesize a new algorithm for calculating this convolution. During the synthesis of the discussed algorithm, we use the fact that quaternion multiplication may be represented as a matrix–vector product. The matrix participating in the product has unique structural properties that allow performing its advantageous decomposition. Namely, this decomposition leads to reducing the multiplicative complexity of computations. In addition, we used the fact that when calculating the elements of the quaternion-valued convolution, the part of the calculations of all matrix–vector products is common. It gives an additional reduction in the number of additions of real numbers and, consequently, a decrease in the additive complexity of calculations. Thus, the use of the proposed algorithm will contribute to the acceleration of calculations in quaternion-valued convolution neural networks.
机译:在本文中,我们分析了算法方法,以降低计算四元数值的线性卷积的算术复杂度,并且还合成了一种计算这种卷积的新算法。在讨论算法的合成期间,我们使用的事实可以将四元数乘法表示为矩阵矢量产品。参与该产品的矩阵具有独特的结构特性,允许执行其有利的分解。即,该分解导致降低计算的乘法复杂性。此外,我们使用的是,当计算四元值卷积的元素时,所有矩阵矢量产品的计算的一部分是常见的。它额外减少了实数的添加数量,并且因此,计算的添加复杂性的减少。因此,所提出的算法的使用将有助于四元值卷积神经网络中的计算加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号