首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Fast 2D Convolution Algorithms for Convolutional Neural Networks
【24h】

Fast 2D Convolution Algorithms for Convolutional Neural Networks

机译:卷积神经网络的快速2D卷积算法

获取原文
获取原文并翻译 | 示例

摘要

Convolutional Neural Networks (CNN) are widely used in different artificial intelligence (AI) applications. Major part of the computation of a CNN involves 2D convolution. In this paper, we propose novel fast convolution algorithms for both 1D and 2D to remove the redundant multiplication operations in convolution computations at the cost of controlled increase of addition operations. For example, when the 2D processing block size is $3imes 3$ , our algorithm has multiplication saving factor as high as 3.24, compared to direct 2D convolution computation scheme. The proposed algorithm can also process input feature maps and generate output feature maps with the same flexible block sizes that are independent of convolution weight kernel size. The memory access efficiency is also largely improved by the proposed method. These structures can be applied to different CNN layers, such as convolution with stride > 1, pooling and deconvolution by exploring flexible feature map processing tile sizes. The proposed algorithm is suitable for both software and hardware implementation.
机译:卷积神经网络(CNN)广泛用于不同的人工智能(AI)应用。 CNN计算的主要部分涉及2D卷积。在本文中,我们为1D和2D提出了新的快速卷积算法,以在加入操作的控制增加成本下拆下卷积计算中的冗余乘法操作。例如,与直接2D卷积计算方案相比,当2D处理块大小为3倍 Times 3 $时,我们的算法具有高达3.24的乘法。该算法还可以处理输入特征映射并生成具有与卷积重量内核大小无关的相同灵活块大小的输出功能映射。通过所提出的方法,内存访问效率也很大程度上得到了改善。这些结构可以应用于不同的CNN层,例如具有步幅的卷积> 1,通过探索柔性特征图处理瓷砖尺寸来汇集和解折叠。所提出的算法适用于软件和硬件实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号