首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Coarse Alignment of Topic and Sentiment: A Unified Model for Cross-Lingual Sentiment Classification
【24h】

Coarse Alignment of Topic and Sentiment: A Unified Model for Cross-Lingual Sentiment Classification

机译:主题与情绪的粗校准:跨语言情绪分类的统一模型

获取原文
获取原文并翻译 | 示例

摘要

Cross-lingual sentiment classification (CLSC) aims to leverage rich-labeled resources in the source language to improve prediction models of a resource-scarce domain in the target language. Existing feature representation learning-based approaches try to minimize the difference of latent features between different domains by exact alignment, which is achieved by either one-to-one topic alignment or matrix projection. Exact alignment, however, restricts the representation flexibility and further degrades the model performances on CLSC tasks if the distribution difference between two language domains is large. On the other hand, most previous studies proposed document-level models or ignored sentiment polarities of topics that might lead to insufficient learning of latent features. To solve the abovementioned problems, we propose a coarse alignment mechanism to enhance the model's representation by a group-to-group topic alignment into an aspect-level fine-grained model. First, we propose an unsupervised aspect, opinion, and sentiment unification model (AOS), which trimodels aspects, opinions, and sentiments of reviews from different domains and helps capture more accurate latent feature representation by a coarse alignment mechanism. To further boost AOS, we propose ps-AOS, a partial supervised AOS model, in which labeled source language data help minimize the difference of feature representations between two language domains with the help of logistics regression. Finally, an expectation-maximization framework with Gibbs sampling is then proposed to optimize our model. Extensive experiments on various multilingual product review data sets show that ps-AOS significantly outperforms various kinds of state-of-the-art baselines.
机译:交叉语言情绪分类(CLSC)旨在利用源语言中丰富标记的资源来改进目标语言中资源稀缺域的预测模型。基于特征表示基于学习的方法尝试通过精确对齐来最小化不同域之间的潜在特征的差异,这是通过一对一主题对齐或矩阵投影来实现的。但是,如果两个语言域之间的分布差值大,则确切对齐地限制表示灵活性并进一步降低CLSC任务上的模型性能。另一方面,最先前的研究提出了文件级模型或忽略了可能导致潜在特征学习不足的主题的情感极性。为了解决上述问题,我们提出了一种粗略的对准机制,以增强模型通过组到组主题对准到一个方面级细粒度模型。首先,我们提出了一个无人监督的方面,意见和情绪统一模型(AOS),其统治各个域的评论的方面,意见和情绪,并通过粗略对准机制帮助捕获更准确的潜在特征表示。为了进一步提升AOS,我们提出了PS-AOS,一个部分监督AOS模型,其中标记的源语言数据有助于在物流回归的帮助下最小化两个语言域之间的特征表示之间的特征表示差异。最后,提出了与Gibbs采样的期望 - 最大化框架,以优化我们的模型。关于各种多语言产品审查数据集的广泛实验表明,PS-AOS显着优于各种最先进的基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号