首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Deep Representation-Based Domain Adaptation for Nonstationary EEG Classification
【24h】

Deep Representation-Based Domain Adaptation for Nonstationary EEG Classification

机译:基于深度表示的域自适应的域自适应

获取原文
获取原文并翻译 | 示例

摘要

In the context of motor imagery, electroencephalography (EEG) data vary from subject to subject such that the performance of a classifier trained on data of multiple subjects from a specific domain typically degrades when applied to a different subject. While collecting enough samples from each subject would address this issue, it is often too time-consuming and impractical. To tackle this problem, we propose a novel end-to-end deep domain adaptation method to improve the classification performance on a single subject (target domain) by taking the useful information from multiple subjects (source domain) into consideration. Especially, the proposed method jointly optimizes three modules, including a feature extractor, a classifier, and a domain discriminator. The feature extractor learns the discriminative latent features by mapping the raw EEG signals into a deep representation space. A center loss is further employed to constrain an invariant feature space and reduce the intrasubject nonstationarity. Furthermore, the domain discriminator matches the feature distribution shift between source and target domains by an adversarial learning strategy. Finally, based on the consistent deep features from both domains, the classifier is able to leverage the information from the source domain and accurately predict the label in the target domain at the test time. To evaluate our method, we have conducted extensive experiments on two real public EEG data sets, data set IIa, and data set IIb of brain-computer interface (BCI) Competition IV. The experimental results validate the efficacy of our method. Therefore, our method is promising to reduce the calibration time for the use of BCI and promote the development of BCI.
机译:在电动机图像的上下文中,脑电图(EEG)数据因受试者而变化,使得在从特定域的多个受试者的数据上训练的分类器的性能通常在应用于不同的主题时降级。从每个主题收集足够的样本时会解决这个问题,而且通常太耗时和不切实际。为了解决这个问题,我们提出了一种新的端到端深域适应方法,通过考虑来自多个受试者(源域)的有用信息来提高单个主题(目标域)的分类性能。特别是,所提出的方法共同优化三个模块,包括特征提取器,分类器和域鉴别器。该特征提取器通过将原始EEG信号映射到深度表示空间来学习辨别潜伏特征。进一步使用中心损耗来限制不变的特征空间并减少intrAsibject不稳定性。此外,域鉴别器通过对抗的学习策略匹配源极和目标域之间的特征分布偏移。最后,基于来自两个域的一致深度特征,分类器能够利用来自源域的信息,并准确地预测测试时间在目标域中的标签。为了评估我们的方法,我们对两个真正的公共EEG数据集,数据集IIA和脑接口(BCI)竞赛IV的数据集IIB进行了广泛的实验。实验结果验证了我们方法的功效。因此,我们的方法很有希望减少使用BCI的校准时间并促进BCI的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号