首页> 外文期刊>Pattern recognition letters >Standardization-refinement domain adaptation method for cross-subject EEG-based classification in imagined speech recognition
【24h】

Standardization-refinement domain adaptation method for cross-subject EEG-based classification in imagined speech recognition

机译:在想象语音识别中基于跨对象EEG的分类的标准化 - 精细域适应方法

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in imagined speech recognition from EEG signals have shown their capability of enabling a new natural form of communication, which is posed to improve the lives of subjects with motor disabilities. However, differences among subjects may be an obstacle to the applicability of a previously trained classifier to new users, since a significant amount of labeled samples must be acquired for each new user, making this process tedious and time-consuming. In this sense, unsupervised domain adaptation (UDA) methods, especially those based on deep learning (D-UDA), arise as a potential solution to address this issue by reducing the differences among feature distributions of subjects. It has been shown that the divergence in the marginal and conditional distributions must be reduced to encourage similar feature distributions. However, current D-UDA methods may become sensitive under adaptation scenarios where a low discriminative feature space among classes is given, reducing the accuracy performance of the classifier. To address this issue, we introduce a D-UDA method, named Standardization-Refinement Domain Adaptation (SRDA), which combines Adaptive Batch Normalization (AdaBN) with a novel loss function based on the variation of information (VOI), in order to build an adaptive classifier on EEG data corresponding to imagined speech. Our proposal, applied over two imagined speech datasets, resulted in SRDA outperforming standard classifiers for BCI and existing D-UDA methods, achieving accuracy performances of 61.02 +/- 08.14% and 62.99 +/- 04.78%, assessed using leave-one-out cross-validation. (C) 2020 Elsevier B.V. All rights reserved.
机译:来自EEG信号的想象语音识别的最新进展已经表明了能力实现新的自然形式的通信,这是为了改善机动残障的受试者的生命。然而,受试者之间的差异可能是将先前训练的分类器适用于新用户的障碍,因为必须为每个新用户获取大量标记的样本,使得该过程繁琐且耗时。从这个意义上讲,无监督的域适应(UDA)方法,尤其是基于深度学习(D-UDA)的方法,因为通过降低对象特征分布的差异来解决这个问题的潜在解决方案。已经表明,必须减少边缘和条件分布的发散,以鼓励类似的特征分布。然而,当前的D-UDA方法可以在给出类别中的低鉴别特征空间的适应方案下变得敏感,从而降低分类器的精度性能。为了解决这个问题,我们介绍了一种D-UDA方法,命名标准化 - 细化域适应(SRDA),其将自适应批量归一化(ADABN)与基于信息的变化(VOI)的变化相结合,以便构建对应于想象语音的EEG数据的自适应分类器。我们的提案应用于两个想象的语音数据集,导致SRDA优于BCI和现有D-UDA方法的标准分类器,实现了61.02 +/- 08.14%和62.99 +/- 04.78%的准确性表现,使用休假进行评估交叉验证。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号