首页> 外文期刊>Pattern recognition letters >Deep domain similarity Adaptation Networks for across domain classification
【24h】

Deep domain similarity Adaptation Networks for across domain classification

机译:适用于跨域分类的深度域相似性适应网络

获取原文
获取原文并翻译 | 示例

摘要

The success of deep neural networks in computer vision tasks requires a large number of annotated samples which are not available for many applications. In the absence of annotated data, domain adaptation provides an avenue to train deep neural networks effectively by utilizing the labeled data from a different but similar domain. In this paper, we propose a new Deep Domain Similarity Adaptation Network (DDSAN) architecture, which can exploit the labeled data from the source domain and unlabeled data from the target domain simultaneously. The DDSAN assumes that the parameters of the deep networks from source and target domains should be close to each other. Then, we transfer the deep network parameters from different domains explicitly instead of matching the deep hidden representations implicitly. By plugging a subnet into the typical deep neural networks, the DDSAN can project the high-dimensional parameters to a lower dimensional subspace and reduce their domain discrepancies. Comparative experiments demonstrate that the proposed network outperforms previous methods on the standard domain adaptation benchmarks. (c) 2018 Elsevier B.V. All rights reserved.
机译:深层神经网络在计算机视觉任务中的成功需要大量带注释的样本,而这些样本对于许多应用程序都不可用。在没有带注释数据的情况下,域自适应为利用来自不同但相似域的标记数据提供了有效训练深度神经网络的途径。在本文中,我们提出了一种新的深域相似性自适应网络(DDSAN)架构,该架构可以同时利用源域中的标记数据和目标域中的未标记数据。 DDSAN假定来自源域和目标域的深层网络的参数应该彼此接近。然后,我们从不同的域显式传输深层网络参数,而不是隐式匹配深层隐藏表示。通过将子网插入典型的深度神经网络,DDSAN可以将高维参数投影到低维子空间并减少其域差异。比较实验表明,所提出的网络在标准域自适应基准上优于以前的方法。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号