首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Stochastic Quasi-Newton Method for Large-Scale Nonconvex Optimization With Applications
【24h】

A Stochastic Quasi-Newton Method for Large-Scale Nonconvex Optimization With Applications

机译:一种随机拟牛顿方法,具有应用大型非谐波优化

获取原文
获取原文并翻译 | 示例

摘要

Ensuring the positive definiteness and avoiding ill conditioning of the Hessian update in the stochastic BroydenFletcher-Goldfarb-Shanno (BFGS) method are significant in solving nonconvex problems. This article proposes a novel stochastic version of a damped and regularized BFGS method for addressing the above problems. While the proposed regularized strategy helps to prevent the BFGS matrix from being close to singularity, the new damped parameter further ensures the positivity of the product of correction pairs. To alleviate the computational cost of the stochastic limited memory BFGS (LBFGS) updates and to improve its robustness, the curvature information is updated using the averaged iterate at spaced intervals. The effectiveness of the proposed method is evaluated through the logistic regression and Bayesian logistic regression problems in machine learning. Numerical experiments are conducted by using both synthetic data set and several real data sets. The results show that the proposed method generally outperforms the stochastic damped LBFGS (SdLBFGS) method. In particular, for problems with small sample sizes, our method has shown superior performance and is capable of mitigating ill-conditioned problems. Furthermore, our method is more robust to the variations of the batch size and memory size than the SdLBFGS method.
机译:确保积极的明确度和避免随机泡沫泡沫 - 古霉法(BFGS)方法中Hessian更新的病态在解决非渗透问题方面是显着的。本文提出了一种用于解决上述问题的阻尼和正规化的BFGS方法的新型随机版本。虽然所提出的正规策略有助于防止BFGS矩阵接近奇异性,但是新的阻尼参数进一步确保了校正对产品的积极性。为了减轻随机有限内存BFG(LBFGS)更新的计算成本并改善其稳健性,使用平均迭代以间隔间隔更新曲率信息。通过机器学习中的逻辑回归和贝叶斯逻辑回归问题评估所提出的方法的有效性。通过使用合成数据集和几种真实数据集进行数值实验。结果表明,该方法通常优于随机阻尼LBFG(SDLBFGS)方法。特别是对于采样尺寸小的问题,我们的方法表现出卓越的性能,并且能够减轻病态问题。此外,我们的方法对于比SDLBFGS方法的批量尺寸和存储器大小的变化更加稳健。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号