首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Barrier Function-Based Adaptive Control for Uncertain Strict-Feedback Systems Within Predefined Neural Network Approximation Sets
【24h】

Barrier Function-Based Adaptive Control for Uncertain Strict-Feedback Systems Within Predefined Neural Network Approximation Sets

机译:基于障碍功能的自适应控制,用于预定义神经网络近似集中的不确定严格反馈系统

获取原文
获取原文并翻译 | 示例

摘要

In this article, a globally stable adaptive control strategy for uncertain strict-feedback systems is proposed within predefined neural network (NN) approximation sets, despite the presence of unknown system nonlinearities. In contrast to the conventional adaptive NN control results in the literature, a primary benefit of the developed approach is that the barrier Lyapunov function is employed to predefine the compact set for maintaining the validity of NN approximation at each step, thus accomplishing the global boundedness of all the closed-loop signals. Simulation results are performed to clarify the effectiveness of the proposed methodology.
机译:在本文中,尽管存在未知的系统非线性,但是在预定义的神经网络(NN)近似集中提出了用于不确定严格反馈系统的全球稳定的自适应控制策略。与文献中的传统自适应NN控制结果相比,所发育方法的主要益处是,采用屏障Lyapunov函数来预定精巧的集合,以保持每个步骤在每个步骤中的NN近似的有效性,从而实现全局界限所有闭环信号。进行仿真结果以澄清所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号