首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions
【24h】

Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions

机译:利威尔分布非参数混合模型建模与聚类阳性载体

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose an effective mixture model-based approach to modeling and clustering positive data vectors. Our mixture model is based on the inverted Beta-Liouville (IBL) distribution which is extracted from the family of Liouville distributions. To cope with the problem of determining the appropriate number of clusters in our approach, a nonparametric Bayesian framework is used to extend the IBL mixture to an infinite mixture model in which the number of clusters is assumed to be infinite initially and will be inferred automatically during the learning process. To optimize the proposed model, we propose a convergence-guaranteed learning algorithm based on the averaged collapsed variational Bayes inference that can effectively learn model parameters with closed-form solutions. The effectiveness of the proposed infinite IBL mixture model for modeling and clustering positive vectors is validated through both synthetic and real-world data sets.
机译:在本文中,我们提出了一种基于模型的模型和聚类正数据向量的有效混合方法。我们的混合物模型基于倒的Beta-Liouville(IBL)分布,这些分布是从Liouville分布的家族中提取的。为了应对确定我们的方法中的适当数量的簇的问题,使用非参数贝叶斯框架将IBL混合物延伸到无限的混合模型,其中假设簇的数量是最初的,并且将在期间自动推断学习过程。为了优化所提出的模型,我们提出了一种基于平均折叠变分贝叶斯推理的收敛保证的学习算法,其可以有效地使用闭合液解决方案学习模型参数。所提出的无限IBL混合模型用于建模和聚类正向载体的有效性通过合成和现实世界数据集进行验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号