首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Person Reidentification via Multi-Feature Fusion With Adaptive Graph Learning
【24h】

Person Reidentification via Multi-Feature Fusion With Adaptive Graph Learning

机译:通过多特征融合与自适应图学习的人员

获取原文
获取原文并翻译 | 示例

摘要

The goal of person reidentification (Re-ID) is to identify a given pedestrian from a network of nonoverlapping surveillance cameras. Most existing works follow the supervised learning paradigm which requires pairwise labeled training data for each pair of cameras. However, this limits their scalability to real-world applications where abundant unlabeled data are available. To address this issue, we propose a multi-feature fusion with adaptive graph learning model for unsupervised Re-ID. Our model aims to negotiate comprehensive assessment on the consistent graph structure of pedestrians with the help of special information of feature descriptors. Specifically, we incorporate multi-feature dictionary learning and adaptive multi-feature graph learning into a unified learning model such that the learned dictionaries are discriminative and the subsequent graph structure learning is accurate. An alternating optimization algorithm with proved convergence is developed to solve the final optimization objective. Extensive experiments on four benchmark data sets demonstrate the superiority and effectiveness of the proposed method.
机译:人员重新登记(RE-ID)的目标是从非封印监视摄像机网络中识别给定的行人。大多数现有的作品遵循监督的学习范例,该范式需要对每对相机进行成对标记的训练数据。但是,这将其对现实世界应用程序的可扩展性限制在可用丰富的未标记数据中。要解决此问题,我们提出了一个多重功能融合,具有用于无监督的RE-ID的自适应图形学习模型。我们的模型旨在通过特征描述符的特殊信息谈判关于行人一致的图形结构的全面评估。具体地,我们将多重特征词典学习和自适应多特征图学习结合到统一的学习模型中,使得学习的词典是判别的,随后的图形结构学习是准确的。开发了一种具有证明收敛的交替优化算法来解决最终的优化目标。四个基准数据集的广泛实验证明了所提出的方法的优越性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号