首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >DeepList: Learning Deep Features With Adaptive Listwise Constraint for Person Reidentification
【24h】

DeepList: Learning Deep Features With Adaptive Listwise Constraint for Person Reidentification

机译:DeepList:学习具有自适应Listwise约束的深度功能以进行人员识别

获取原文
获取原文并翻译 | 示例

摘要

Person reidentification (re-id) aims to match a specific person across nonoverlapping cameras, which is an important but challenging task in video surveillance. Conventional methods mainly focus either on feature constructing or metric learning. Recently, some deep learning-based methods have been proposed to learn image features and similarity measures jointly. However, current deep models for person re-id are usually trained with either pairwise loss, where the number of negative pairs greatly outnumbering that of positive pairs may lead the training model to be biased toward negative pairs or constant margin hinge loss, without considering the fact that hard negative samples should be paid more attention in the training stage. In this paper, we propose to learn deep representations with an adaptive margin listwise loss. First, ranking lists instead of image pairs are used as training samples, in this way, the problem of data imbalance is relaxed. Second, by introducing an adaptive margin parameter in the listwise loss function, it can assign larger margins to harder negative samples, which can be interpreted as an implementation of the automatic hard negative mining strategy. To gain robustness against changes in poses and part occlusions, our architecture combines four convolutional neural networks, each of which embeds images from different scales or different body parts. The final combined model performs much better than each single model. The experimental results show that our approach achieves very promising results on the challenging CUHK03, CUHK01, and VIPeR data sets.
机译:人员重新识别(re-id)旨在在不重叠的摄像机中匹配特定人员,这在视频监控中是一项重要但具有挑战性的任务。常规方法主要关注特征构建或度量学习。最近,已经提出了一些基于深度学习的方法来共同学习图像特征和相似性度量。但是,当前针对人员重新识别的深层模型通常采用成对损失进行训练,其中负对的数目大大多于正对的数目,可能导致训练模型偏向负对或恒定余量铰链损失,而无需考虑在训练阶段应更加注意硬质阴性样品。在本文中,我们建议学习具有自适应余量列表式损失的深度表示。首先,使用排名列表而不是图像对作为训练样本,这样可以缓解数据不平衡的问题。其次,通过在listwise损失函数中引入自适应余量参数,可以将较大的余量分配给较难的负样本,这可以解释为自动硬负挖掘策略的实现。为了获得针对姿势和部分遮挡变化的鲁棒性,我们的体系结构结合了四个卷积神经网络,每个网络都嵌入了来自不同比例或不同身体部位的图像。最终组合模型的性能要比每个单个模型好得多。实验结果表明,我们的方法在具有挑战性的CUHK03,CUHK01和VIPeR数据集上取得了非常有希望的结果。

著录项

  • 来源
  • 作者单位

    National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong University of Science and Technology, Wuhan, China;

    School of Computer, Wuhan University, Wuhan, China;

    National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong University of Science and Technology, Wuhan, China;

    National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Automation, Huazhong University of Science and Technology, Wuhan, China;

    School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Training; Probes; Measurement; Feature extraction; Fasteners; Machine learning; Computer architecture;

    机译:培训;探测;测量;特征提取;紧固件;机器学习;计算机体系结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号