首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Deep Neural Network Initialization With Decision Trees
【24h】

Deep Neural Network Initialization With Decision Trees

机译:与决策树的深度神经网络初始化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel, automated process for constructing and initializing deep feedforward neural networks based on decision trees is presented. The proposed algorithm maps a collection of decision trees trained on the data into a collection of initialized neural networks with the structures of the networks determined by the structures of the trees. The tree-informed initialization acts as a warm-start to the neural network training process, resulting in efficiently trained, accurate networks. These models, referred to as "deep jointly informed neural networks" (DJINN), demonstrate high predictive performance for a variety of regression and classification data sets and display comparable performance to Bayesian hyperparameter optimization at a lower computational cost. By combining the user-friendly features of decision tree models with the flexibility and scalability of deep neural networks, DJINN is an attractive algorithm for training predictive models on a wide range of complex data sets.
机译:本文提出了一种基于决策树构建和初始化深馈神经网络的新颖,自动化过程。该算法将在数据上培训的决策树集合映射到初始化的神经网络的集合中,该集合具有由树的结构确定的网络的结构。树上通知的初始化充当神经网络训练过程的热启动,导致有效培训,准确的网络。这些模型称为“深度共同通知的神经网络”(Djinn),展示了各种回归和分类数据集的高预测性能,并以较低的计算成本对贝叶斯QuandEdparameter优化显示相当的性能。通过将决策树模型的用户友好特征与深神经网络的灵活性和可扩展性相结合,Djinn是一种有吸引力的算法,用于训练各种复杂数据集的预测模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号