首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Kinodynamic Motion Planning With Continuous-Time Q-Learning: An Online, Model-Free, and Safe Navigation Framework
【24h】

Kinodynamic Motion Planning With Continuous-Time Q-Learning: An Online, Model-Free, and Safe Navigation Framework

机译:具有连续时间Q学习的运动动力学运动计划:在线,无模型且安全的导航框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an online kinodynamic motion planning algorithmic framework using asymptotically optimal rapidly-exploring random tree (RRT) and continuous-time Q-learning, which we term as RRT-Q( star operator ). We formulate a model-free Q-based advantage function and we utilize integral reinforcement learning to develop tuning laws for the online approximation of the optimal cost and the optimal policy of continuous-time linear systems. Moreover, we provide rigorous Lyapunov-based proofs for the stability of the equilibrium point, which results in asymptotic convergence properties. A terminal state evaluation procedure is introduced to facilitate the online implementation. We propose a static obstacle augmentation and a local replanning framework, which are based on topological connectedness, to locally recompute the robot's path and ensure collision-free navigation. We perform simulations and a qualitative comparison to evaluate the efficacy of the proposed methodology.
机译:本文提出了一种基于渐近最优快速探索随机树(RRT)和连续时间Q学习的在线运动学运动计划算法框架,我们将其称为RRT-Q(star operator)。我们制定了无模型的基于Q的优势函数,并利用积分强化学习来开发调整律,以在线逼近连续时间线性系统的最优成本和最优策略。此外,我们提供了基于Lyapunov的严格证明,证明了平衡点的稳定性,从而得出了渐近收敛性。引入了终端状态评估程序,以方便在线实施。我们提出了一种基于拓扑连接性的静态障碍物增强和局部重新规划框架,以局部重新计算机器人的路径并确保无碰撞导航。我们进行仿真和定性比较,以评估所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号