首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Extended Dissipativity Analysis for Markovian Jump Neural Networks With Time-Varying Delay via Delay-Product-Type Functionals
【24h】

Extended Dissipativity Analysis for Markovian Jump Neural Networks With Time-Varying Delay via Delay-Product-Type Functionals

机译:时滞乘积类型的时变时滞马尔可夫跳跃神经网络的扩展耗散分析

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the problem of extended dissipativity for Markovian jump neural networks (MJNNs) with a time-varying delay. The objective is to derive less conservative extended dissipativity criteria for delayed MJNNs. Toward this aim, an appropriate Lyapunov-Krasovskii functional (LKF) with some improved delay-product-type terms is first constructed. Then, by employing the extended reciprocally convex matrix inequality (ERCMI) and the Wirtinger-based integral inequality to estimate the derivative of the constructed LKF, a delay-dependent extended dissipativity condition is derived for the delayed MJNNs. An improved extended dissipativity criterion is also given via the allowable delay sets method. Based on the above-mentioned results, the extended dissipativity condition of delayed NNs without Markovian jump parameters is directly derived. Finally, three numerical examples are employed to illustrate the advantages of the proposed method.
机译:本文研究具有时变时滞的马尔可夫跳跃神经网络(MJNN)的扩展耗散性问题。目的是为延迟的MJNN导出不那么保守的扩展耗散性准则。为了实现这一目标,首先构造了具有一些改进的延迟乘积类型项的适当的Lyapunov-Krasovskii泛函(LKF)。然后,通过使用扩展的倒凸矩阵不等式(ERCMI)和基于Wirtinger的积分不等式来估计所构造的LKF的导数,得出了延迟MJNNs的时滞相关扩展耗散条件。还通过允许延迟集方法给出了改进的扩展耗散性准则。基于上述结果,直接推导了无马尔可夫跳跃参数的时滞神经网络的扩展耗散条件。最后,通过三个数值例子说明了该方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号