首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification
【24h】

A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification

机译:基于粒子群优化的柔性卷积自动编码器的图像分类

获取原文
获取原文并翻译 | 示例

摘要

Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data during the past several years. However, they are unable to construct the state-of-the-art CNNs due to their intrinsic architectures. In this regard, we propose a flexible CAE (FCAE) by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional CAE. We also design an architecture discovery method by exploiting particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed FCAE with much less computational resource and without any manual intervention. We test the proposed approach on four extensively used image classification data sets. Experimental results show that our proposed approach in this paper significantly outperforms the peer competitors including the state-of-the-art algorithms.
机译:在过去的几年中,卷积自动编码器(CAE)在堆叠到深卷积神经网络(CNN)来对图像数据进行分类中表现出了卓越的性能。但是,由于其固有的体系结构,它们无法构建最新的CNN。在这方面,我们通过消除传统CAE对卷积层和池化层数量的限制,提出了一种灵活的CAE(FCAE)。我们还通过利用粒子群优化设计了一种架构发现方法,该方法能够以更少的计算资源并且无需任何人工干预就能自动搜索所提出的FCAE的最佳架构。我们在四个广泛使用的图像分类数据集上测试了该方法。实验结果表明,本文提出的方法明显优于包括最新算法在内的同行竞争对手。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号