首页> 外文OA文献 >A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification
【2h】

A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification

机译:基于粒子群优化的柔性卷积Automencoder,用于图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Convolutional auto-encoders have shown their remarkable performance instacking to deep convolutional neural networks for classifying image dataduring past several years. However, they are unable to construct thestate-of-the-art convolutional neural networks due to their intrinsicarchitectures. In this regard, we propose a flexible convolutional auto-encoderby eliminating the constraints on the numbers of convolutional layers andpooling layers from the traditional convolutional auto-encoder. We also designan architecture discovery method by using particle swarm optimization, which iscapable of automatically searching for the optimal architectures of theproposed flexible convolutional auto-encoder with much less computationalresource and without any manual intervention. We use the designed architectureoptimization algorithm to test the proposed flexible convolutional auto-encoderthrough utilizing one graphic processing unit card on four extensively usedimage classification datasets. Experimental results show that our work in thispaper significantly outperform the peer competitors including thestate-of-the-art algorithm.
机译:卷积自动编码器已经向深度卷积神经网络向深度卷积神经网络显示了他们的显着性能,以进行分类过去几年的图像。然而,由于其内在建筑,它们无法构建最艺术卷积神经网络。在这方面,我们提出了一种灵活的卷积自动编码,消除了传统卷积自动编码器的卷积层和泛水层数量的约束。我们还通过使用粒子群优化设计架构发现方法,这是可以自动搜索的,以自动搜索有关较低的计算资产源和无需任何手动干预的较少的柔性卷积自动编码器的最佳架构。我们使用设计的建筑优化算法测试了在四个广泛使用的三维分类数据集上使用一个图形处理单元卡来测试所提出的灵活卷积自动编码。实验结果表明,我们在此选项中的工作显着优于对等竞争者在内的竞争对手的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号