首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Learning Control for Nonlinear Systems With Randomly Varying Iteration Lengths
【24h】

Adaptive Learning Control for Nonlinear Systems With Randomly Varying Iteration Lengths

机译:迭代长度随机变化的非线性系统的自适应学习控制

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes adaptive iterative learning control (ILC) schemes for continuous-time parametric nonlinear systems with iteration lengths that randomly vary. As opposed to the existing ILC works that feature nonuniform trial lengths, this paper is applicable to nonlinear systems that do not satisfy the globally Lipschitz continuous condition. In addition, this paper introduces a novel composite energy function based on newly defined virtual tracking error information for proving the asymptotical convergence. Both an original update algorithm and a projection-based update algorithm for estimating the unknown parameters are proposed. Extensions to cases with unknown input gains, iteration-varying tracking references, nonparametric uncertainty, high-order nonlinear systems, and multi-input-multi-output systems are all elaborated upon. Illustrative simulations are provided to verify the theoretical results.
机译:本文针对迭代时间随机变化的连续时间参数非线性系统提出了一种自适应迭代学习控制(ILC)方案。与现有的具有非均匀试验长度的ILC工作相反,本文适用于不满足全局Lipschitz连续条件的非线性系统。此外,本文介绍了一种基于新定义的虚拟跟踪误差信息的新型复合能量函数,以证明其渐近收敛性。提出了用于估计未知参数的原始更新算法和基于投影的更新算法。详细阐述了扩展到具有未知输入增益,变化迭代跟踪参考,非参数不确定性,高阶非线性系统以及多输入多输出系统的情况。提供了说明性仿真以验证理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号