首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >SEFRON: A New Spiking Neuron Model With Time-Varying Synaptic Efficacy Function for Pattern Classification
【24h】

SEFRON: A New Spiking Neuron Model With Time-Varying Synaptic Efficacy Function for Pattern Classification

机译:SEFRON:具有时变突触功效功能的新型穗神经元模型用于模式分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new time-varying long-term Synaptic Efficacy Function-based leaky-integrate-and-fire neuRON model, referred to as SEFRON and its supervised learning rule for pattern classification problems. The time-varying synaptic efficacy function is represented by a sum of amplitude modulated Gaussian distribution functions located at different times. For a given pattern, the SEFRON's learning rule determines the changes in the amplitudes of weights at selected presynaptic spike times by minimizing a new error function reflecting the differences between the desired and actual postsynaptic firing times. Similar to the gamma-aminobutyric acid-switch phenomenon observed in a biological neuron that switches between excitatory and inhibitory postsynaptic potentials based on the physiological needs, the time-varying synapse model proposed in this paper allows the synaptic efficacy (weight) to switch signs in a continuous manner. The computational power and the functioning of SEFRON are first illustrated using a binary pattern classification problem. The detailed performance comparisons of a single SEFRON classifier with other spiking neural networks (SNNs) are also presented using four benchmark data sets from the UCI machine learning repository. The results clearly indicate that a single SEFRON provides a similar generalization performance compared to other SNNs with multiple layers and multiple neurons.
机译:本文提出了一种新的基于时变的长期突触功效函数的泄漏积分和发射neuRON模型,称为SEFRON及其针对模式分类问题的监督学习规则。时变突触功效函数由位于不同时间的调幅高斯分布函数之和表示。对于给定的模式,SEFRON的学习规则通过最小化反映所需突触后触发时间与实际突触后触发时间之间差异的新误差函数,来确定选定突触前尖峰时间的权重振幅变化。与在生理神经元中根据生理需要在兴奋性和抑制性突触后电位之间切换的生物神经元中观察到的γ-氨基丁酸切换现象相似,本文提出的时变突触模型允许突触功效(权重)在信号传导中切换信号。连续的方式。首先使用二进制模式分类问题来说明SEFRON的计算能力和功能。还使用UCI机器学习存储库中的四个基准数据集介绍了单个SEFRON分类器与其他尖峰神经网络(SNN)的详细性能比较。结果清楚地表明,与具有多层和多个神经元的其他SNN相比,单个SEFRON提供了相似的泛化性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号