首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Fast Inference Predictive Coding: A Novel Model for Constructing Deep Neural Networks
【24h】

Fast Inference Predictive Coding: A Novel Model for Constructing Deep Neural Networks

机译:快速推理预测编码:构建深度神经网络的新模型

获取原文
获取原文并翻译 | 示例

摘要

As a biomimetic model of visual information processing, predictive coding (PC) has become increasingly popular for explaining a range of neural responses and many aspects of brain organization. While the development of PC model is encouraging in the neurobiology community, its practical applications in machine learning (e.g., image classification) have not been fully explored yet. In this paper, a novel image processing model called fast inference PC (FIPC) is presented for image representation and classification. Compared with the basic PC model, a regression procedure and a classification layer have been added to the proposed FIPC model. The regression procedure is used to learn regression mappings that achieve fast inference at test time, while the classification layer can instruct the model to extract more discriminative features. In addition, effective learning and fine-tuning algorithms are developed for the proposed model. Experimental results obtained on four image benchmark data sets show that our model is able to directly and fast infer representations and, simultaneously, produce lower error rates on image classification tasks.
机译:作为视觉信息处理的仿生模型,预测性编码(PC)在解释一系列神经反应和大脑组织的许多方面变得越来越流行。虽然PC模型的开发在神经生物学界令人鼓舞,但尚未在计算机学习中将其实际应用(例如图像分类)进行充分探索。在本文中,提出了一种新颖的图像处理模型,称为快速推理PC(FIPC),用于图像表示和分类。与基本的PC模型相比,FIPC模型中增加了回归过程和分类层。回归过程用于学习回归映射,从而在测试时实现快速推断,而分类层则可以指示模型提取更多判别特征。此外,针对该模型开发了有效的学习和微调算法。在四个图像基准数据集上获得的实验结果表明,我们的模型能够直接,快速地推断表示形式,同时在图像分类任务上产生较低的错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号