首页> 外文期刊>Neural Network World >OPTIMIZATION OF ECHO STATE NEURAL NETWORKS FOR ELECTRICAL LOAD FORECASTING
【24h】

OPTIMIZATION OF ECHO STATE NEURAL NETWORKS FOR ELECTRICAL LOAD FORECASTING

机译:用于电力负荷预测的回声状态神经网络的优化

获取原文
获取原文并翻译 | 示例

摘要

The predictive performance of Echo State neural networks were optimized for electrical load forecasting and compared to the results achieved by competitors in the worldwide Eunite Competition #1. The test data used were the actual results of the competition, attached to a specific region. A regular adaptation of an Echo State neural network was optimized by adapting the weights of the dynamic reservoir through Anti-Hebbian learning, and the weights from input and output neurons to the hidden neurons were optimized using the Metropolis algorithm. The results achieved with such an optimized Echo State neural network would gain a strong second place within the Eunite competition.
机译:Echo State神经网络的预测性能针对电力负荷预测进行了优化,并与全球Eunite竞赛#1中的竞争对手所获得的结果进行了比较。所使用的测试数据是比赛的实际结果,并附加到特定区域。通过使用反希伯来学习调整动态储层的权重,优化了回声状态神经网络的常规适应性,并使用Metropolis算法优化了从输入和输出神经元到隐藏神经元的权重。通过这种优化的Echo State神经网络获得的结果将在Eunite竞争中获得强大的第二名。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号