首页> 外文期刊>Mathematics and computers in simulation >Comparison of echo state network and feed-forward neural networks in electrical load forecasting for demand response programs
【24h】

Comparison of echo state network and feed-forward neural networks in electrical load forecasting for demand response programs

机译:回声状态网络和前馈神经网络在需求响应计划中的电负荷预测中的比较

获取原文
获取原文并翻译 | 示例

摘要

The electrical load forecasting is a fundamental technique for consumer load prediction for utilities. The accurate load forecasting is crucial to design Demand Response (DR) programs in the paradigm of smart grids. Artificial Neural Network (ANN) based techniques have been widely used in recent years and applied to predict the electric load with high accuracy to participate in DR programs for commercial, industrial and residential consumers. This research work is focused on the use and comparison of two ANN-based load forecasting techniques, i.e. Feed-Forward Neural Network (FFNN) and Echo State Network (ESN), on a dataset related to commercial buildings, in view of a possible DR program application. The results of both models are compared based on the load forecasting accuracy through experimental measurements and suitably defined metrics.
机译:电负荷预测是用于公用事业的消费者负荷预测的基本技术。准确的负载预测对于智能电网范式的设计需求响应(DR)程序至关重要。近年来,基于人工神经网络(ANN)技术已被广泛使用,并应用于高精度的电荷,以参与商业,工业和住宅消费者的博士计划。鉴于可能的博士,该研究工作专注于使用和比较两个基于ANN的负载预测技术,即前馈神经网络(FFNN)和回声状态网络(ESN)的数据集上,鉴于可能的博士程序应用程序。通过实验测量和适当定义的指标基于负载预测精度进行比较两种模型的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号