首页> 外文期刊>Neural Network World >AN EFFICIENT PATTERN CLASSIFICATION APPROACH: COMBINATION OF WEIGHTED LDA WITH WEIGHTED NEAREST NEIGHBOR
【24h】

AN EFFICIENT PATTERN CLASSIFICATION APPROACH: COMBINATION OF WEIGHTED LDA WITH WEIGHTED NEAREST NEIGHBOR

机译:一种有效的模式分类方法:加权LDA与加权最近邻点的组合

获取原文
获取原文并翻译 | 示例

摘要

Linear discriminant analysis (LDA) is a versatile method in all pattern recognition fields but it suffers from some limitations. In a multi-class problem, when samples of a class are far from other classes samples, it leads to bias of the whole decision boundaries of LDA in favor of the farthest class. To overcome this drawback, this study is aimed at minimizing this bias by redefining the between-and within-class scatter matrices via incorporating weight vectors derived from Fisher value of classes pairs. After projecting the input patterns into a lower-dimensional space in which the class samples arc more separable, a new version of nearest neighbor (NN) method with an adaptive distance measure is employed to classify the transformed samples. To speed up the adaptive distance routine, an iterative learning algorithm that minimizes the error rate is presented. This efficient method is applied to six standard datasots driven from the UCI repository datasct and test results arc evaluated from three aspects in terms of accuracy, robustness, and complexity. Results show the supremacy of the proposed two-layer classifier in comparison with the combination of different versions of LDA and NN methods from the three points of view. Moreover, the proposed classifier is assessed in the noisy environment of those datascts and the achieved results confirm the high robustness of the introduced scheme when compared to others.
机译:线性判别分析(LDA)在所有模式识别领域都是一种通用方法,但存在一些局限性。在多类别问题中,当一个类别的样本与其他类别的样本相距甚远时,这会导致LDA的整个决策边界偏向于最远的类别。为了克服这个缺点,本研究旨在通过合并从类对的Fisher值得出的权重向量来重新定义类间和类内散布矩阵,以最小化此偏差。在将输入模式投影到一个低维空间中,在该空间中类别样本更加可分离之后,采用具有自适应距离度量的新版本的最近邻(NN)方法对转换后的样本进行分类。为了加快自适应距离例程的速度,提出了一种将错误率降至最低的迭代学习算法。这种有效的方法适用于从UCI存储库datasct驱动的六个标准datasot,并且从准确性,鲁棒性和复杂性三个方面评估了测试结果。从三种观点来看,结果表明,与不同版本的LDA和NN方法的组合相比,拟议的两层分类器具有至高无上的地位。此外,在这些数据的嘈杂环境中对提出的分类器进行了评估,与其他方法相比,所获得的结果证实了引入方案的高鲁棒性。

著录项

  • 来源
    《Neural Network World》 |2010年第5期|p.621-635|共15页
  • 作者单位

    Faculty of Electrical and Computer Engineering, Mollasadra St., Shiraz University, Shiraz, Iran;

    Faculty of Electrical and Computer Engineering, Mollasadra St., Shiraz University, Shiraz, Iran;

    Faculty of Electrical and Computer Engineering, Mollasadra St., Shiraz University, Shiraz, Iran;

    Faculty of Electrical and Computer Engineering, Mollasadra St., Shiraz University, Shiraz, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    LDA; PCA; weighted nearest neighbor (WNN); weighted LDA (WLDA);

    机译:LDA;PCA;加权最近邻居(WNN);加权LDA(WLDA);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号