首页> 外文期刊>Neural Network World >FINGERPRINT FEATURE EXTRACTION AND CLASSIFICATION BY LEARNING THE CHARACTERISTICS OF FINGERPRINT PATTERNS
【24h】

FINGERPRINT FEATURE EXTRACTION AND CLASSIFICATION BY LEARNING THE CHARACTERISTICS OF FINGERPRINT PATTERNS

机译:通过学习指纹图案特征提取指纹特征并进行分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a two stage novel technique for fingerprint feature extraction and classification. Fingerprint images are considered as texture patterns and Multi Layer Perceptron (MLP) is proposed as a feature extractor. The same fingerprint patterns are applied as input and output of MLP. The characteristics output is taken from single hidden layer as the properties of the fingerprints. These features are applied as an input to the classifier to classify the features into five broad classes. The preliminary experiments were conducted on small benchmark database and the found results were promising. The results were analyzed and compared with other similar existing techniques.
机译:本文提出了一种两阶段的指纹特征提取与分类新技术。指纹图像被视为纹理图案,而多层感知器(MLP)被提议作为特征提取器。相同的指纹图案被用作MLP的输入和输出。从单个隐藏层获取的特征输出作为指纹的属性。这些特征被用作分类器的输入,以将特征分为五大类。在小型基准数据库上进行了初步实验,发现的结果是有希望的。分析结果并将其与其他类似的现有技术进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号