首页> 外文期刊>Neural Network World >INTELLIGENT NETWORK-MISUSE-DETECTION-SYSTEM USING NEUROTREE CLASSIFIER
【24h】

INTELLIGENT NETWORK-MISUSE-DETECTION-SYSTEM USING NEUROTREE CLASSIFIER

机译:使用神经分类器的智能网络-滥用检测系统

获取原文
获取原文并翻译 | 示例

摘要

Intrusion detection systems (IDSs) are designed to distinguish normal and intrusive activities. A critical part of the IDS design depends on the selection of informative features and the appropriate machine learning technique. In this paper, we investigated the problem of IDS from these two perspectives and constructed a misuse based neurotree classifier capable of detecting anomalies in networks. The major implications of this paper are a) Employing weighted sum genetic feature extraction process which provides better discrimination ability for detecting anomalies in network traffic; b) Realizing the system as a rule-based model using an ensemble efficient machine learning technique, neurotree which possesses better comprehensibility and generalization ability; c) Utilizing an activation function which is targeted at minimizing the error rates in the learning algorithm. An extensive experimental evaluation on a database containing normal and anomaly traffic patterns shows that the proposed scheme with the selected features and the chosen classifier is a state-of-the-art IDS that outperforms previous IDS methods.
机译:入侵检测系统(IDS)旨在区分正常活动和入侵活动。 IDS设计的关键部分取决于信息功能的选择和适当的机器学习技术。在本文中,我们从这两个角度研究了IDS问题,并构建了一种基于误用的神经树分类器,该分类器能够检测网络中的异常情况。本文的主要意义是:a)采用加权和的遗传特征提取过程,该过程可提供更好的判别能力以检测网络流量中的异常情况; b)使用集成高效的机器学习技术将系统作为基于规则的模型实现,神经树具有更好的可理解性和泛化能力; c)利用旨在最小化学习算法中的错误率的激活函数。对包含正常流量和异常流量模式的数据库进行的广泛实验评估表明,具有所选功能和所选分类器的拟议方案是最新的IDS,其性能优于以前的IDS方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号