首页> 外文期刊>Neural Computing and Applications >A quasi-Newton-based spatial multiple materials detector for hyperspectral imagery
【24h】

A quasi-Newton-based spatial multiple materials detector for hyperspectral imagery

机译:基于准牛顿的空间多材料探测器,用于高光谱成像

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral remote sensing in space provides information related to surface material characteristics of spacecraft or planets that can be exploited to perform automated detection of targets of interest. At present, the detection in space environment is definitely a hot spot all over the world. So, developing the technique of multiple materials detection makes great sense. In this paper, we propose an algorithm for spatial multiple materials detection in hyperspectral images, which is based on high-order statistics and quasi-Newton method. The proposed detection algorithm, quasi-Newton-based multiple materials detector (QNMMD), exploits spectral information exclusively to make decisions by considering that each pixel contains the interesting materials or not. After single time detection, the pixel containing multiple interesting materials spectra can be exactly detected. The proposed detector has three superiorities. Firstly, due to the quasi-Newton method the proposed algorithm is relatively fast. It needs few times iteration for detecting calculation. Secondly, it performs well when the interesting materials are in low probabilities or small population with the non-Gaussian statistics. Thirdly, with regularization items the algorithm is robust to noise and works well when there are various kinds of interesting materials needing to be detected. Experimental results based on the hyperspectral image of Hubble Space Telescope prove the QNMMD algorithm is effective.
机译:太空中的高光谱遥感可提供与航天器或行星的表面材料特性有关的信息,这些信息可被利用来执行目标目标的自动检测。当前,太空环境中的探测绝对是全世界的热点。因此,开发多种材料检测技术非常有意义。本文提出了一种基于高阶统计和拟牛顿法的高光谱空间多材料检测算法。所提出的检测算法,基于准牛顿的多种物质检测器(QNMMD),通过考虑每个像素是否包含感兴趣的物质,专门利用光谱信息做出决策。在单次检测之后,可以准确检测包含多个有趣材料光谱的像素。提出的检测器具有三个优点。首先,由于拟牛顿法,该算法相对较快。它需要几次迭代来检测计算。其次,当具有非高斯统计量的有趣材料的概率较低或人口较少时,它的性能很好。第三,对于正则项,该算法对噪声具有鲁棒性,并且在需要检测各种有趣的材料时效果很好。基于哈勃太空望远镜的高光谱图像的实验结果证明了QNMMD算法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号