首页> 外文期刊>Neural Computing and Applications >Discriminative speaker recognition using large margin GMM
【24h】

Discriminative speaker recognition using large margin GMM

机译:使用大幅度GMM的辨别性说话人识别

获取原文
获取原文并翻译 | 示例

摘要

Most state-of-the-art speaker recognition systems are based on discriminative learning approaches. On the other hand, generative Gaussian mixture models (GMM) have been widely used in speaker recognition during the last decades. In an earlier work, we proposed an algorithm for discriminative training of GMM with diagonal covariances under a large margin criterion. In this paper, we propose an improvement of this algorithm, which has the major advantage of being computationally highly efficient, thus well suited to handle large-scale databases. We also develop a new strategy to detect and handle the outliers that occur in the training data. To evaluate the performances of our new algorithm, we carry out full NIST speaker identification and verification tasks using NIST-SRE’2006 data, in a Symmetrical Factor Analysis compensation scheme. The results show that our system significantly outperforms the traditional discriminative support vector machines (SVM)-based system of SVM-GMM supervectors, in the two speaker recognition tasks.
机译:大多数最新的说话人识别系统都是基于判别式学习方法的。另一方面,在过去的几十年中,生成高斯混合模型(GMM)已广泛用于说话人识别。在较早的工作中,我们提出了一种在较大余量准则下对角坐标协方差的GMM判别训练算法。在本文中,我们提出了对该算法的改进,其主要优点是计算效率高,因此非常适合处理大型数据库。我们还开发了一种新的策略来检测和处理训练数据中出现的异常值。为了评估我们新算法的性能,我们使用对称因子分析补偿方案,使用NIST-SRE’2006数据执行了完整的NIST说话人识别和验证任务。结果表明,在两个说话人识别任务中,我们的系统明显优于传统的基于支持向量机(SVM)的SVM-GMM超向量系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号