首页> 外文期刊>Speech Communication >Robust distant speaker recognition based on position-dependent CMN by combining speaker-specific GMM with speaker-adapted HMM
【24h】

Robust distant speaker recognition based on position-dependent CMN by combining speaker-specific GMM with speaker-adapted HMM

机译:通过结合特定于说话人的GMM和适用于说话人的HMM,基于位置相关的CMN进行鲁棒的远方说话人识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a robust speaker recognition method based on position-dependent Cepstral Mean Normalization (CMN) to compensate for the channel distortion depending on the speaker position. In the training stage, the system measures the transmission characteristics according to the speaker positions from some grid points to the microphone in the room and estimates the compensation parameters a priori. In the recognition stage, the system estimates the speaker position and adopts the estimated compensation parameters corresponding to the estimated position, and then the system applies the CMN to the speech and performs speaker recognition. In our past study, we proposed a new text-independent speaker recognition method by combining speaker-specific Gaussian mixture models (GMMs) with syllable-based HMMs adapted to the speakers by MAP [Nakagawa, S., Zhang, W., Takahashi, M., 2004. Text-independent speaker recognition by combining speaker-specific GMM with speaker-adapted syllable-based HMM. Proc. ICASSP-2004 1,81-84]. The robustness of this speaker recognition method for the change of the speaking style in close-talking environment was evaluated in (Nakagawa et al., 2004). In this paper, we extend this combination method to distant speaker recognition and integrate this method with the proposed position-dependent CMN. Our experiments showed that the proposed method improved the speaker recognition performance remarkably in a distant environment.
机译:在本文中,我们提出了一种基于位置依赖的倒谱均值归一化(CMN)的鲁棒说话人识别方法,以补偿取决于说话人位置的声道失真。在训练阶段,系统根据扬声器位置(从一些网格点到房间中的麦克风)测量传输特性,并事先估计补偿参数。在识别阶段,系统估计说话者的位置并采用与估计位置相对应的估计补偿参数,然后系统将CMN应用于语音并执行说话者识别。在过去的研究中,我们通过结合特定于说话人的高斯混合模型(GMM)与适用于说话人的基于音节的HMM来提出一种新的独立于文本的说话人识别方法[Nakagawa,S.,Zhang,W.,Takahashi, M.,2004年。通过将特定于说话人的GMM与基于说话人的基于音节的HMM相结合,实现了与文本无关的说话人识别。程序ICASSP-2004 1,81-84]。 (Nakagawa et al。,2004)评估了这种说话人识别方法在近距离交谈环境中改变说话风格的鲁棒性。在本文中,我们将这种组合方法扩展到远方说话人识别,并将该方法与提出的位置相关的CMN进行集成。我们的实验表明,该方法在较远的环境下可以显着提高说话人的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号