首页> 外文期刊>Neural Computing and Applications >Robust speech recognition based on independent vector analysis using harmonic frequency dependency
【24h】

Robust speech recognition based on independent vector analysis using harmonic frequency dependency

机译:基于独立矢量分析的谐波频率依赖性鲁棒语音识别

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an algorithm that enhances speech by independent vector analysis (IVA) using harmonic frequency dependency for robust speech recognition. While the conventional IVA exploits the full-band uniform dependencies of each source signal, a harmonic clique model is introduced to improve the enhancement performance by modeling strong dependencies among multiples of fundamental frequencies. An IVA-based learning algorithm is derived to consider the non-holonomic constraint and the minimal distortion principle to reduce the unavoidable distortion of IVA, and the minimum power distortionless response beamformer is used as a pre-processing step. In addition, the algorithm compares the log-spectral features of the enhanced speech and observed noisy speech to identify time–frequency segments corrupted by noise and restores those with the cluster-based missing feature reconstruction technique. Experimental results demonstrate that the proposed method enhances recognition performance significantly in noisy environments, especially with competing interference.
机译:本文介绍了一种算法,该算法通过使用谐波频率相关性的独立矢量分析(IVA)增强语音,从而实现可靠的语音识别。当常规的IVA利用每个源信号的全频带统一依赖性时,引入了谐波团模型以通过对多个基本频率之间的强依赖性进行建模来改善增强性能。推导了一种基于IVA的学习算法,考虑了非完整约束和最小失真原理,以减少IVA不可避免的失真,并将最小功率无失真响应波束形成器用作预处理步骤。此外,该算法将增强语音和观察到的嘈杂语音的对数频谱特征进行比较,以识别被噪声破坏的时频段,并使用基于聚类的缺失特征重建技术来恢复那些时频段。实验结果表明,该方法在嘈杂的环境中,特别是在竞争干扰下,可以显着提高识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号