首页> 外文期刊>Neural Computing and Applications >The globally asymptotic stability analysis for a class of recurrent neural networks with delays
【24h】

The globally asymptotic stability analysis for a class of recurrent neural networks with delays

机译:一类时滞递归神经网络的全局渐近稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the problem of global stability of neural networks with delays. By combining Lie algebra and the Lyapunov function with the integral inequality technique, we analyze the globally asymptotic stability of a class of recurrent neural networks with delays and give an estimate of the exponential stability. A few new sufficient conditions and criteria are proposed to ensure globally asymptotic stability of the equilibrium point of the neural networks. A few simulation examples are presented to demonstrate the effectiveness of the results and to improve feasibility.
机译:本文考虑了具有时滞的神经网络的全局稳定性问题。通过将李代数和李雅普诺夫函数与积分不等式技术相结合,我们分析了一类具有时滞的递归神经网络的全局渐近稳定性,并给出了指数稳定性的估计。提出了一些新的充分条件和准则,以确保神经网络平衡点的全局渐近稳定性。给出了一些仿真示例,以证明结果的有效性并提高可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号