首页> 外文期刊>Neural Computing and Applications >Feed-back neural networks with discrete weights
【24h】

Feed-back neural networks with discrete weights

机译:具有离散权重的反馈神经网络

获取原文
获取原文并翻译 | 示例

摘要

We use the Monte Carlo Adaptation learning algorithm to design feed-back neural networks with discrete weights. The dynamic properties of these types of neural networks are investigated as a function of the states of weights. The numerical results of these networks show three phases: the “chaos phase,” the “pure memory phase” and the “mixture phase” in the parameter space. The maximum storage ratio for the “pure memory phase” increases with the increasing of the states of the weights, which is favorable for practical applications.
机译:我们使用蒙特卡洛自适应学习算法来设计具有离散权重的反馈神经网络。研究了这些类型的神经网络的动态特性,它们是权重状态的函数。这些网络的数值结果显示了三个阶段:参数空间中的“混乱阶段”,“纯存储阶段”和“混合阶段”。 “纯存储阶段”的最大存储比率随着权重状态的增加而增加,这对于实际应用是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号