首页> 外文期刊>Neural Computing and Applications >Robust minimum class variance twin support vector machine classifier
【24h】

Robust minimum class variance twin support vector machine classifier

机译:鲁棒最小类方差孪生支持向量机分类器

获取原文
获取原文并翻译 | 示例

摘要

The recently proposed twin support vector machine (TWSVM) obtains much faster training speed and comparable performance than classical support vector machine. However, it only considers the empirical risk minimization principle, which leads to poor generalization for real-world applications. In this paper, we formulate a robust minimum class variance twin support vector machine (RMCV-TWSVM). RMCV-TWSVM effectively overcomes the shortcoming in TWSVM by introducing a pair of uncertain class variance matrices in its objective functions. As a special case, we present a special type of the uncertain class variance matrices by combining the empirical positive and negative class variance matrices. Computational results on several synthetic as well as benchmark datasets indicate the significant advantages of proposed classifier in both computational time and test accuracy.
机译:与经典支持向量机相比,最近提出的双支持向量机(TWSVM)获得了更快的训练速度和相当的性能。但是,它仅考虑了经验风险最小化原理,这导致实际应用中的泛化能力很差。在本文中,我们制定了鲁棒的最小类方差孪生支持向量机(RMCV-TWSVM)。 RMCV-TWSVM通过在目标函数中引入一对不确定的类方差矩阵,有效地克服了TWSVM的缺点。作为一种特殊情况,我们通过组合经验正负类方差矩阵来呈现一种特殊类型的不确定类方差矩阵。在几个综合数据和基准数据集上的计算结果表明,提出的分类器在计算时间和测试准确性上均具有显着优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号