首页> 外文期刊>Knowledge-Based Systems >Clustering by twin support vector machine and least square twin support vector classifier with uniform output coding
【24h】

Clustering by twin support vector machine and least square twin support vector classifier with uniform output coding

机译:双胞胎支持向量机和最小二乘双胞胎支持向量分类器的均一输出编码聚类

获取原文
获取原文并翻译 | 示例

摘要

The recently proposed twin support vector clustering (TWSVC) is a powerful clustering method. However, TWSVC may encounter the singularity problem and it is time consuming in the learning stage. In this paper, we introduce some efficient techniques into TWSVC, and propose two clustering models, called twin bounded support vector clustering (TBSVC) and least square twin bounded support vector clustering (LSTBSVC), respectively. TBSVC introduces a maximum margin regularization term into TWSVC, which not only avoids its singularity but also significantly improves the performance. LSTBSVC introduces the least square formation into TBSVC to greatly accelerate its learning speed. Moreover, a uniform output coding for LSTBSVC is introduced to cope with the non-uniformed problem in the learning procedures. In addition, nonlinear clustering is also extended to the above clustering methods by using the kernel trick. Experimental results show the effectiveness and efficiency of our methods.
机译:最近提出的孪生支持向量聚类(TWSVC)是一种强大的聚类方法。但是,TWSVC可能会遇到奇点问题,并且在学习阶段非常耗时。在本文中,我们向TWSVC中介绍了一些有效的技术,并提出了两个聚类模型,分别称为孪生有界支持向量聚类(TBSVC)和最小二乘孪生有界支持向量聚类(LSTBSVC)。 TBSVC在TWSVC中引入了最大余量正则化项,这不仅避免了其奇异性,而且还显着提高了性能。 LSTBSVC在TBSVC中引入了最小二乘形式,以极大地提高其学习速度。此外,针对LSTBSVC引入了统一的输出编码,以应对学习过程中的非统一问题。另外,非线性聚类也通过使用内核技巧而扩展到上述聚类方法。实验结果表明了我们方法的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号