首页> 外文期刊>Neural Computing and Applications >An efficient Kernel-based matrixized least squares support vector machine
【24h】

An efficient Kernel-based matrixized least squares support vector machine

机译:一种基于内核的高效矩阵最小二乘支持向量机

获取原文
获取原文并翻译 | 示例

摘要

Matrix-pattern-oriented linear classifier design has been proven successful in improving classification performance. This paper proposes an efficient kernelized classifier for Matrixized Least Square Support Vector Machine (MatLSSVM). The classifier is realized by introducing a kernel-induced distance metric and a majority-voting technique into MatLSSVM, and thus is named Kernel-based Matrixized Least Square Support Vector Machine (KMatLSSVM). Firstly, the original Euclidean distance for optimizing MatLSSVM is replaced by a kernel-induced distance, then different initializations for the weight vectors are given and the correspondingly generated sub-classifiers are combined with the majority vote rule, which can expand the solution space and mitigate the local solution of the original MatLSSVM. The experiments have verified that one iteration is enough for each sub-classifier of the presented KMatLSSVM to obtain a superior performance. As a result, compared with the original linear MatLSSVM, the proposed method has significant advantages in terms of classification accuracy and computational complexity.
机译:事实证明,面向矩阵模式的线性分类器设计可成功提高分类性能。本文为矩阵最小二乘支持向量机(MatLSSVM)提出了一种有效的内核分类器。该分类器是通过在MatLSSVM中引入核诱导的距离度量和多数投票技术来实现的,因此被称为基于核的矩阵最小二乘支持向量机(KMatLSSVM)。首先,用内核引入的距离替换用于优化MatLSSVM的原始欧几里得距离,然后给出权重向量的不同初始化,并将相应生成的子分类器与多数表决规则结合,从而扩大求解空间并减轻原始MatLSSVM的本地解决方案。实验已经证明,对于所提出的KMatLSSVM的每个子分类器,一次迭代就足以获得优异的性能。结果,与原始线性MatLSSVM相比,该方法在分类精度和计算复杂度方面具有明显优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号