首页> 外文期刊>Neural Computing and Applications >New classification techniques for electroencephalogram (EEG) signals and a real-time EEG control of a robot
【24h】

New classification techniques for electroencephalogram (EEG) signals and a real-time EEG control of a robot

机译:脑电图(EEG)信号的新分类技术和机器人的实时EEG控制

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the state-of-the-art classification techniques for electroencephalogram (EEG) signals. Fuzzy Functions Support Vector Classifier, Improved Fuzzy Functions Support Vector Classifier and a novel technique that has been designed by utilizing Particle Swarm Optimization and Radial Basis Function Networks (PSO-RBFN) have been studied. The classification performances of the techniques are compared on standard EEG datasets that are publicly available and used by brain–computer interface (BCI) researchers. In addition to the standard EEG datasets, the proposed classifier is also tested on non-EEG datasets for thorough comparison. Within the scope of this study, several data clustering algorithms such as Fuzzy C-means, K-means and PSO clustering algorithms are studied and their clustering performances on the same datasets are compared. The results show that PSO-RBFN might reach the classification performance of state-of-the art classifiers and might be a better alternative technique in the classification of EEG signals for real-time application. This has been demonstrated by implementing the proposed classifier in a real-time BCI application for a mobile robot control.
机译:本文研究了脑电图(EEG)信号的最新分类技术。研究了模糊函数支持向量分类器,改进的模糊函数支持向量分类器以及利用粒子群优化和径向基函数网络(PSO-RBFN)设计的一种新技术。在标准的EEG数据集上比较了该技术的分类性能,该数据集可公开获得并由脑机接口(BCI)研究人员使用。除标准EEG数据集外,还对非EEG数据集测试了建议的分类器,以进行全面比较。在本研究的范围内,研究了几种数据聚类算法,如模糊C均值,K均值和PSO聚类算法,并比较了它们在同一数据集上的聚类性能。结果表明,PSO-RBFN可能达到最新分类器的分类性能,并且可能是实时应用的EEG信号分类中的一种更好的替代技术。通过在用于移动机器人控制的实时BCI应用程序中实现建议的分类器,可以证明这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号