首页> 外文期刊>Neural Computing and Applications >A support vector machine based MSM model for financial short-term volatility forecasting
【24h】

A support vector machine based MSM model for financial short-term volatility forecasting

机译:基于支持向量机的MSM模型用于金融短期波动率预测

获取原文
获取原文并翻译 | 示例

摘要

Financial time series forecasting has become a challenge because of its long-memory, thick tails and volatility persistence. Multifractal process has recently been proposed as a new formalism for this problem. An iterative Markov-Switching Multifractal (MSM) model was introduced to the literature. It is able to capture many of the important stylized features of the financial time series, including long-memory in volatility, volatility clustering, and return outliers. The model delivers stronger performance both in- and out-of-sample than GARCH-type models in long-term forecasts. To enhance MSM’s short-term prediction accuracy, this paper proposes a support vector machine (SVM) based MSM approach which exploits MSM model to forecast volatility and SVM to model the innovations. To verify the effectiveness of the proposed approach, two stock indexes in the Chinese A-share market are chosen as the forecasting targets. Comparing with some existing state-of-the-art models, the proposed approach gives superior results. It indicates that the proposed model provides a promising alternative to financial short-term volatility prediction.
机译:由于时间序列长,尾巴粗大和波动性持久,因此金融时间序列预测已成为一项挑战。最近已经提出了多重分形过程作为该问题的新形式主义。文献中介绍了一种迭代马尔可夫切换多分形(MSM)模型。它能够捕获金融时间序列的许多重要的程式化特征,包括波动率中的长记忆,波动率聚类和收益离群值。在长期预测中,该模型在样本内和样本外的性能均优于GARCH型模型。为了提高MSM的短期预测准确性,本文提出了一种基于支持向量机(SVM)的MSM方法,该方法利用MSM模型预测波动率,并利用SVM对创新进行建模。为了验证该方法的有效性,选择了中国A股市场中的两个股指作为预测目标。与一些现有的最新模型相比,所提出的方法给出了更好的结果。这表明所提出的模型为金融短期波动性预测提供了有希望的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号