首页> 外文期刊>Neural Computing & Applications >Ability to forecast unsteady aerodynamic forces of flapping airfoils by artificial neural network
【24h】

Ability to forecast unsteady aerodynamic forces of flapping airfoils by artificial neural network

机译:能够通过人工神经网络预测扑翼的不稳定空气动力

获取原文
获取原文并翻译 | 示例

摘要

The ability of artificial neural networks (ANN) to model the unsteady aerodynamic force coefficients of flapping motion kinematics has been studied. A neural networks model was developed based on multi-layer perception (MLP) networks and the Levenberg–Marquardt optimization algorithm. The flapping kinematics data were divided into two groups for the training and the prediction test of the ANN model. The training phase led to a very satisfactory calibration of the ANN model. The attempt to predict aerodynamic forces both the lift coefficient and drag coefficient showed that the ANN model is able to simulate the unsteady flapping motion kinematics and its corresponding aerodynamic forces. The shape of the simulated force coefficients was found to be similar to that of the numerical results. These encouraging results make it possible to consider interesting and new prospects for the modelling of flapping motion systems, which are highly non-linear systems.
机译:研究了人工神经网络(ANN)对拍打运动运动学的非定常气动力系数进行建模的能力。基于多层感知(MLP)网络和Levenberg-Marquardt优化算法开发了神经网络模型。扑动运动学数据分为两组,分别用于神经网络模型的训练和预测测试。训练阶段导致对ANN模型的校准非常令人满意。预测升力系数和阻力系数的空气动力的尝试表明,ANN模型能够模拟非定常拍打运动运动学及其相应的空气动力。发现模拟力系数的形状与数值结果的形状相似。这些令人鼓舞的结果使我们有可能考虑为拍打运动系统建模(有趣的是新的前景),该系统是高度非线性的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号