首页> 外文期刊>Neural Computing & Applications >Fractal initialization for high-quality mapping with self-organizing maps
【24h】

Fractal initialization for high-quality mapping with self-organizing maps

机译:分形初始化,用于使用自组织映射的高质量映射

获取原文
获取原文并翻译 | 示例

摘要

Initialization of self-organizing maps is typically based on random vectors within the given input space. The implicit problem with random initialization is the overlap (entanglement) of connections between neurons. In this paper, we present a new method of initialization based on a set of self-similar curves known as Hilbert curves. Hilbert curves can be scaled in network size for the number of neurons based on a simple recursive (fractal) technique, implicit in the properties of Hilbert curves. We have shown that when using Hilbert curve vector (HCV) initialization in both classical SOM algorithm and in a parallel-growing algorithm (ParaSOM), the neural network reaches better coverage and faster organization.
机译:自组织映射的初始化通常基于给定输入空间内的随机向量。随机初始化的隐式问题是神经元之间连接的重叠(纠缠)。在本文中,我们提出了一种基于称为希尔伯特曲线的自相似曲线的初始化方法。希尔伯特曲线可以根据简单的递归(分形)技术在神经网络的数量上按网络大小进行缩放,隐含在希尔伯特曲线的属性中。我们已经表明,在经典SOM算法和并行增长算法(ParaSOM)中都使用希尔伯特曲线矢量(HCV)初始化时,神经网络可以达到更好的覆盖范围和更快的组织速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号