首页> 外文期刊>Neural Computing & Applications >Multidimensional scaling with discrimination coefficients for supervised visualization of high-dimensional data
【24h】

Multidimensional scaling with discrimination coefficients for supervised visualization of high-dimensional data

机译:具有判别系数的多维缩放,可在高维数据的监督下可视化

获取原文
获取原文并翻译 | 示例

摘要

Visualization techniques for high-dimensional data sets play a pivotal role in exploratory analysis in a wide range of disciplines. A particularly challenging problem represents gene expression data based on microarray technology where the number of features (genes) typically exceeds 20,000, whereas the number of samples is frequently below 200. We investigated class-specific discrimination coefficients for each feature and each pair of classes for an effective nonlinear mapping to lower-dimensional space. We applied the technique to three microarray data sets and compared the projections to two-dimensional space with the results from a conventional multidimensional scaling method, a score plot resulting from principal component analysis, and projections from linear discriminant analysis. In the experiments, we observed that the discrimination coefficients allowed for an improved visualization of high-dimensional genomic data.
机译:高维数据集的可视化技术在各种学科的探索性分析中起着关键作用。一个特别具有挑战性的问题是基于微阵列技术的基因表达数据,其中特征(基因)的数量通常超过20,000,而样本数量通常低于200。我们研究了每种特征和每对类别的类别特异性判别系数有效的非线性映射到低维空间。我们将该技术应用于三个微阵列数据集,并将投影到二维空间的结果与常规多维缩放方法的结果,主成分分析的得分图和线性判别分析的投影结果进行了比较。在实验中,我们观察到判别系数可以改善高维基因组数据的可视化效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号