首页> 外文期刊>Neural Computing & Applications >Combining GRN modeling and demonstration-based programming for robot control
【24h】

Combining GRN modeling and demonstration-based programming for robot control

机译:将GRN建模与基于演示的编程相结合进行机器人控制

获取原文
获取原文并翻译 | 示例

摘要

In recent years, gene regulatory networks (GRNs) have been proposed to work as reliable and robust control mechanisms for robots. Because recurrent neural networks (RNNs) have the unique characteristic of presenting system dynamics over time, we thus adopt such kind of network structure and the principles of gene regulation to develop a biologically and computationally plausible GRN model for robot control. To simulate the regulatory effects and to make our model inferable from time-series data, we also implement an enhanced network-learning algorithm to derive network parameters efficiently. In addition, we present a procedure of programming-by-demonstration to collect behavior sequence data of the robot as expression profiles, and then employ our network-modeling framework to infer controllers. To verify the proposed approach, experiments have been conducted, and the results show that our regulatory model can be inferred for robot control successfully.
机译:近年来,已经提出了基因调节网络(GRN)作为机器人的可靠且强大的控制机制。由于递归神经网络(RNN)具有随时间推移呈现系统动力学的独特特征,因此我们采用这种网络结构和基因调控原理来开发生物学上和计算上可行的GRN模型用于机器人控制。为了模拟监管效果并使我们的模型可从时间序列数据中推断出来,我们还实现了增强的网络学习算法,可以高效地导出网络参数。此外,我们提出了一种通过演示编程的程序,以收集机器人的行为序列数据作为表达配置文件,然后采用我们的网络建模框架来推断控制器。为了验证所提出的方法,已经进行了实验,结果表明可以成功地推断出我们的调节模型以进行机器人控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号