首页> 外文期刊>Neural Computing & Applications >Soft-computing methods for robust authentication using soft-biometric data
【24h】

Soft-computing methods for robust authentication using soft-biometric data

机译:使用软生物学数据进行鲁棒认证的软计算方法

获取原文
获取原文并翻译 | 示例

摘要

Biometrics is the measurement of person’s physiological or behavioral characteristics. It enables authentication of a person’s identity using such measurements. Biometric-based authentication is thus becoming increasingly important in computer-based applications because the amount of sensitive data stored in such systems is growing. Particularly challenging is the implementation of biometric-based authentication in embedded computer system applications, because the resources of such systems are scarce. Reliability and performance are two primary requirements to be satisfied in embedded system applications. Single-mode and hard-feature-based biometrics do not offer enough reliability and performance to satisfy such requirements. Multimode biometrics is a primary level of improvement. Soft-biometric features can thus be considered along with hard-biometric features to further improve performance. A combination of soft-computing methods and soft-biometric data can yield more improvements in authentication performance by limiting requirements for memory and processing power. The multi-biometric approach also increases system reliability, since most embedded systems can capture more than one physiological or behavioral characteristic. A multi-biometric platform that combines voiceprint and fingerprint authentication was developed as a reference model to demonstrate the potential of soft-computing methods and soft-biometric data. Hard-computing pattern-matching algorithms were applied to match hard-biometric features. Artificial neural network (ANN) processing was applied to match soft-biometric features. Both hard-computing and soft-computing matching results are inferred by a fuzzy logic engine to perform smart authentication using a decision-fusion paradigm. The embedded implementation was based on a single-chip, floating-point, digital signal processor (DSP) to demonstrate the practical embeddability of such an approach and the improved performance that can be attained despite limited system resources.
机译:生物识别技术是对人的生理或行为特征的度量。通过这种测量,可以对人的身份进行身份验证。因此,基于生物特征的身份验证在基于计算机的应用程序中变得越来越重要,因为此类系统中存储的敏感数据量正在增长。尤其具有挑战性的是在嵌入式计算机系统应用程序中实施基于生物统计的身份验证,因为此类系统的资源稀缺。可靠性和性能是嵌入式系统应用程序要满足的两个主要要求。单模和基于硬功能的生物识别技术不能提供足够的可靠性和性能来满足此类要求。多模式生物识别技术是主要的改进水平。因此,可以将软生物特征与硬生物特征一起考虑,以进一步提高性能。通过限制对内存和处理能力的要求,将软计算方法和软生物特征数据结合使用可以在身份验证性能方面带来更大的改进。由于大多数嵌入式系统可以捕获多个生理或行为特征,因此多生物学方法还可以提高系统可靠性。开发了将声纹和指纹认证相结合的多生物学平台作为参考模型,以展示软计算方法和软生物学数据的潜力。硬计算模式匹配算法被应用于匹配硬生物特征。人工神经网络(ANN)处理应用于匹配软生物特征。模糊逻辑引擎可以推断硬计算匹配和软计算匹配结果,以使用决策融合范式执行智能身份验证。嵌入式实现基于单芯片浮点数字信号处理器(DSP),以演示这种方法的实际可嵌入性以及尽管系统资源有限也可以获得的改进性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号