首页> 外文期刊>Neural Computing & Applications >Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators
【24h】

Globally stable adaptive robust tracking control using RBF neural networks as feedforward compensators

机译:使用RBF神经网络作为前馈补偿器的全局稳定自适应鲁棒跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

In previous adaptive neural network control schemes, neural networks are usually used as feedback compensators. So, only semi-globally uniformly ultimate boundedness of closed-loop systems can be guaranteed, and no methods are given to determine the neural network approximation domain. However, in this paper, it is showed that if neural networks are used as feedforward compensators instead of feedback ones, then we can ensure the globally uniformly ultimate boundedness of closed-loop systems and determine the neural network approximation domain via the bound of known reference signals. It should be pointed out that this domain is very important for designing the neural network structure, for example, it directly determines the choice of the centers of radial basis function neural networks. Simulation examples are given to illustrate the effectiveness of the proposed control approaches.
机译:在先前的自适应神经网络控制方案中,神经网络通常用作反馈补偿器。因此,只能保证闭环系统的半全局一致极限极限,而没有给出确定神经网络逼近域的方法。然而,本文表明,如果将神经网络用作前馈补偿器而不是反馈补偿器,则我们可以确保闭环系统的全局一致极限极限,并通过已知参考的界线确定神经网络的近似域。信号。应该指出的是,该域对于设计神经网络结构非常重要,例如,它直接确定径向基函数神经网络中心的选择。仿真例子说明了所提出的控制方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号