首页> 外文期刊>Neural computation >Resonator Networks, 1: An Efficient Solution for Factoring High-Dimensional, Distributed Representations of Data Structures
【24h】

Resonator Networks, 1: An Efficient Solution for Factoring High-Dimensional, Distributed Representations of Data Structures

机译:谐振器网络,1:用于对数据结构的高维,分布式表示的有效解决方案

获取原文
获取原文并翻译 | 示例

摘要

The ability to encode and manipulate data structures with distributedneural representations could qualitatively enhance the capabilities of traditionalneural networks by supporting rule-based symbolic reasoning,a central property of cognition. Here we show how this may be accomplishedwithin the framework of Vector Symbolic Architectures (VSAs)(Plate, 1991; Gayler, 1998; Kanerva, 1996), whereby data structures areencoded by combining high-dimensional vectors with operations thattogether form an algebra on the space of distributed representations.In particular, we propose an efficient solution to a hard combinatorialsearch problem that arises when decoding elements of a VSA data structure:the factorization of products of multiple codevectors. Our proposedalgorithm, called a resonator network, is a new type of recurrent neuralnetwork that interleaves VSA multiplication operations and patterncompletion. We show in two examples-parsing of a tree-like data structure and parsing of a visual scene-how the factorization problemarises and how the resonator network can solve it. More broadly, resonatornetworks open the possibility of applying VSAs to myriad artificialintelligence problems in real-world domains. The companion articlein this issue (Kent, Frady, Sommer, & Olshausen, 2020) presents a rigorousanalysis and evaluation of the performance of resonator networks,showing it outperforms alternative approaches.
机译:用分布式编码和操作数据结构的能力神经表征可以定性增强传统的能力通过支持基于规则的符号推理,神经网络,认知的核心属性。在这里,我们展示了如何实现这一目标在矢量符号架构(VSA)的框架内(板材,1991; Gayler,1998; Kanerva,1996),其中数据结构是通过将高维向量与操作组合来编码在分布式表示的空间上一起形成代数。特别是,我们提出了一种高效的解决方案来实现硬组合搜索问题在解码VSA数据结构的元素时出现:多个代码图的产品的分解。我们的提议算法称为谐振器网络,是一种新型的复发性神经网络网络交织VSA乘法操作和模式的网络完成。我们在两个示例中展示了一个像树状数据结构的解析,并解析视觉场景 - 如何分解问题出现以及谐振器网络如何解决它。更广泛地,谐振器网络开辟了将VSA应用于无数人工的可能性现实世界领域的智力问题。伴侣文章在这个问题(Kent,Frady,Sommer,&Olshausen,2020)呈现严谨谐振器网络性能分析与评估,显示它优于替代方法。

著录项

  • 来源
    《Neural computation》 |2020年第12期|2311-2331|共21页
  • 作者单位

    Redwood Center for Theoretical Neuroscience University of California Berkeley Berkeley CA 94720 U.S.A. and Intel Laboratories Neuromorphic Computing Lab San Francisco CA 94111 U.S.A.;

    Redwood Center for Theoretical Neuroscience and Electrical Engineering andComputer Sciences University of California Berkeley Berkeley CA 94720 U.S.A.;

    Redwood Center for Theoretical Neuroscience Helen Wills Neuroscience Institute and School of Optometry University of California Berkeley Berkeley CA 94720 U.S.A.;

    Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute University of California Berkeley Berkeley CA 94720 U.S.A. and IntelLaboratories Neuromorphic Computing Lab San Francisco CA 94111 U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号