首页> 外文期刊>Neural computation >A Cerebellar Computational Mechanism for Delay Conditioning at Precise Time Intervals
【24h】

A Cerebellar Computational Mechanism for Delay Conditioning at Precise Time Intervals

机译:以精确的时间间隔延迟调节的小脑计算机制

获取原文
获取原文并翻译 | 示例

摘要

The cerebellum is known to have an important role in sensing and execution of precise time intervals, but the mechanism by which arbitrary time intervals can be recognized and replicated with high precision is unknown. We propose a computational model in which precise time intervals can be identified from the pattern of individual spike activity in a population of parallel fibers in the cerebellar cortex. The model depends on the presence of repeatable sequences of spikes in response to conditioned stimulus input. We emulate granule cells using a population of Izhikevich neuron approximations driven by random but repeatable mossy fiber input. We emulate long-term depression (LTD) and long-term potentiation (LTP) synaptic plasticity at the parallel fiber to Purkinje cell synapse. We simulate a delay conditioning paradigm with a conditioned stimulus (CS) presented to the mossy fibers and an unconditioned stimulus (US) some time later issued to the Purkinje cells as a teaching signal. We show that Purkinje cells rapidly adapt to decrease firing probability following onset of the CS only at the interval for which the US had occurred. We suggest that detection of replicable spike patterns provides an accurate and easily learned timing structure that could be an important mechanism for behaviors that require identification and production of precise time intervals.
机译:已知小脑在感测和执行精确的时间间隔中具有重要作用,但是可以通过高精度识别和复制任意时间间隔的机制是未知的。我们提出了一种计算模型,其中可以从小脑皮质中的平行纤维群中的单个尖峰活动的模式识别精确的时间间隔。该模型取决于响应于条件刺激投入的可重复阶段的存在。我们使用由随机但可重复的苔藓纤维纤维输入驱动的Izhikevich神经元近似的群体模拟颗粒细胞。我们在平行纤维上模拟了长期凹陷(LTD)和长期增强(LTP)突触塑性到Purkinje Cell Synapse。我们模拟了延迟调节范例,其调节刺激(CS)呈现给苔藓纤维和无条件的刺激(美国)以后作为教学信号发给Purkinje细胞的时间。我们表明,浦本信息细胞迅速适应仅在CS的发生后降低射击概率,仅在我们所发生的时间间隔内。我们建议检测可复制的尖峰模式提供了一种准确且易于学习的定时结构,这可能是需要识别和生产精确时间间隔的行为的重要机制。

著录项

  • 来源
    《Neural computation》 |2020年第11期|2069-2084|共16页
  • 作者单位

    Univ Southern Calif Dept Biomed Engn Los Angeles CA 90089 USA|Univ Southern Calif Dept Neurol Los Angeles CA 90089 USA|Univ Southern Calif Dept Biokinesiol Los Angeles CA 90089 USA;

    Adv Telecommun Res Inst Int Brain Informat Commun Res Lab Kyoto 6190288 Japan|RIKEN Ctr Adv Intelligence Project Chuo Ku Tokyo 1030027 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号