首页> 外文期刊>Neural computation >A Survey on Deep Learning forMultimodal Data Fusion
【24h】

A Survey on Deep Learning forMultimodal Data Fusion

机译:深度学习的多模式数据融合研究

获取原文
获取原文并翻译 | 示例

摘要

With the wide deployments of heterogeneous networks, huge amounts of data with characteristics of high volume, high variety, high velocity, and high veracity are generated. These data, referred to multimodal big data, contain abundant intermodality and cross-modality information and pose vast challenges on traditional data fusion methods. In this review, we present some pioneering deep learning models to fuse these multimodal big data. With the increasing exploration of the multimodal big data, there are still some challenges to be addressed. Thus, this review presents a survey on deep learning for multimodal data fusion to provide readers, regardless of their original community, with the fundamentals of multimodal deep learning fusion method and to motivate new multimodal data fusion techniques of deep learning. Specifically, representative architectures that arewidely used are summarized as fundamental to the understanding of multimodal deep learning. Then the current pioneering multimodal data fusion deep learning models are summarized. Finally, some challenges and future topics of multimodal data fusion deep learning models are described.
机译:随着异构网络的广泛部署,产生了具有高容量,高多样性,高速度和高准确性的特征的大量数据。这些数据被称为多模式大数据,包含丰富的联运和跨联运信息,对传统的数据融合方法提出了巨大的挑战。在这篇评论中,我们提出了一些开创性的深度学习模型来融合这些多模式大数据。随着对多模式大数据的不断探索,仍有一些挑战需要解决。因此,本综述提出了一种针对多模式数据融合的深度学习的调查,旨在为无论其原始社区如何的读者提供多模式深度学习融合方法的基础知识,并激发新的深度学习多模式数据融合技术。具体来说,总结了广泛使用的代表性架构,这是理解多模式深度学习的基础。然后总结了当前开创性的多模式数据融合深度学习模型。最后,描述了多模式数据融合深度学习模型的一些挑战和未来的主题。

著录项

  • 来源
    《Neural computation》 |2020年第5期|829-864|共36页
  • 作者单位

    School of Software Technology Dalian University of Technology Dalian 116620 China and Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province Dalian 116620 China;

    School of Software Technology Dalian University of Technology Dalian 116620 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号