首页> 外文期刊>Neural computation >Feature Extraction of Surface Electromyography Based on Improved Small-World Leaky Echo State Network
【24h】

Feature Extraction of Surface Electromyography Based on Improved Small-World Leaky Echo State Network

机译:基于改进的小世界泄漏回波状态网络的表面肌电特征提取

获取原文
获取原文并翻译 | 示例

摘要

Surface electromyography (sEMG) is an electrophysiological reflectionof skeletal muscle contractile activity that can directly reflect neuromuscularactivity. It has been a matter of research to investigate feature extractionmethods of sEMG signals. In this letter, we propose a featureextraction method of sEMG signals based on the improved small-worldleaky echo state network (ISWLESN). The reservoir of leaky echo statenetwork (LESN) is connected by a random network. First, we improvedthe reservoir of the echo state network (ESN) by these networks andused edge-added probability to improve these networks. That idea enhancesthe adaptability of the reservoir, the generalization ability, andthe stability of ESN. Then we obtained the output weight of the networkthrough training and used it as features. We recorded the sEMG signals during different activities: falling, walking, sitting, squatting, goingupstairs, and going downstairs. Afterward, we extracted correspondingfeatures by ISWLESN and used principal component analysis fordimension reduction. At the end, scatter plot, the class separability index,and the Davies-Bouldin indexwere used to assess the performance of features.The results showed that the ISWLESN clustering performance wasbetter than those of LESN and ESN. By support vector machine, it wasalso revealed that the performance of ISWLESN for classifying the activitieswas better than those of ESN and LESN.
机译:表面肌电图(sEMG)是骨骼肌收缩活动的电生理反映,可以直接反映神经肌肉活动。研究sEMG信号的特征提取方法已经成为研究的问题。在这封信中,我们提出了一种基于改进的小世界泄漏回波状态网络(ISWLESN)的sEMG信号特征提取方法。泄漏回波状态网络(LESN)的存储库由随机网络连接。首先,我们通过这些网络改进了回波状态网络(ESN)的存储库,并使用了边沿增加的概率来改进这些网络。这个想法增强了油藏的适应性,泛化能力和ESN的稳定性。然后我们通过训练获得了网络的输出权重,并将其用作特征。我们在不同的活动中记录了sEMG信号:跌倒,行走,坐下,蹲下,上楼和下楼。之后,我们通过ISWLESN提取了相应的特征,并使用主成分分析进行了维数缩减。最后,使用散点图,类可分离性指数和Davies-Bouldin指数评估了特征的性能。结果表明,ISWLESN聚类性能优于LESN和ESN。通过支持向量机,还发现ISWLESN在对活动进行分类方面的性能要优于ESN和LESN。

著录项

  • 来源
    《Neural computation》 |2020年第4期|741-758|共18页
  • 作者单位

    School of Automation Hangzhou Dianzi University Hangzhou 310018 China;

    Biomedical Informatics Center George Washington University Washington DC 20052 U.S.A.;

    Jinhua People’s Hospital Jinhua 321000 China;

    Department of Automation Zhejiang University of Technology Hangzhou 310023 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号