首页> 外文期刊>Neural computation >On Kernel Method–Based Connectionist Models and Supervised Deep LearningWithout Backpropagation
【24h】

On Kernel Method–Based Connectionist Models and Supervised Deep LearningWithout Backpropagation

机译:基于核方法的连接主义模型和无反向传播的受监督深度学习

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a novel family of connectionist models based on kernel machines and consider the problem of learning layer by layer a compositional hypothesis class (i.e., a feedforward, multilayer architecture) in a supervised setting. In terms of the models, we present a principled method to “kernelize” (partly or completely) any neural network (NN). With this method, we obtain a counterpart of any given NN that is powered by kernel machines instead of neurons. In terms of learning, when learning a feedforward deep architecture in a supervised setting, one needs to train all the components simultaneously using backpropagation (BP) since there are no explicit targets for the hidden layers (Rumelhart, Hinton, & Williams, 1986). We consider without loss of generality the two-layer case and present a general framework that explicitly characterizes a target for the hidden layer that is optimal for minimizing the objective function of the network. This characterization then makes possible a purely greedy training scheme that learns one layer at a time, starting from the input layer. We provide instantiations of the abstract framework under certain architectures and objective functions. Based on these instantiations, we present a layer-wise training algorithm for an llayer feedforward network for classification, where l ≥ 2 can be arbitrary. This algorithm can be given an intuitive geometric interpretation that makes the learning dynamics transparent. Empirical results are provided to complement our theory.We show that the kernelized networks, trained layer-wise, compare favorably with classical kernel machines as well as other connectionist models trained by BP. We also visualize the inner workings of the greedy kernelized models to validate our claim on the transparency of the layer-wise algorithm.
机译:我们提出了一种基于内核机器的新型连接论模型家族,并考虑了在有监督的设置中逐层学习组成假设类(即前馈,多层体系结构)的问题。在模型方面,我们提出了一种原理化的方法来“内核化”(部分或完全)任何神经网络(NN)。使用这种方法,我们可以获得由内核机器而不是神经元驱动的任何给定NN的对应物。在学习方面,当在有监督的环境中学习前馈深度架构时,需要使用反向传播(BP)同时训练所有组件,因为隐藏层没有明确的目标(Rumelhart,Hinton,&Williams,1986)。我们在不失一般性的情况下考虑了两层情况,并提出了一个通用框架,该框架明确地描述了隐藏层目标的特征,该目标对于最小化网络的目标功能是最佳的。然后,这种表征使纯贪婪的训练方案成为可能,该方案从输入层开始一次学习一层。我们在某些架构和目标功能下提供了抽象框架的实例。基于这些实例,我们为分层前馈网络提出了一种用于分类的分层训练算法,其中l≥2可以是任意的。可以为该算法提供直观的几何解释,从而使学习动态变得透明。提供的经验结果补充了我们的理论。我们证明,分层训练的内核化网络与经典的内核机器以及由BP训练的其他连接主义模型相比具有优势。我们还将可视化贪婪内核化模型的内部工作,以验证我们对分层算法透明性的主张。

著录项

  • 来源
    《Neural computation》 |2020年第1期|97-135|共39页
  • 作者单位

    Department of Electrical and Computer Engineering University of Florida Gainesville FL 32611 U.S.A;

    Department of Mathematics University of Florida Gainesville FL 32611 U.S.A;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号