This paper presents the modelling possibilities of kernel-based approaches to a complex real-world problem, i.e. corporate and municipal credit rating classification. Based on a model design that includes data pre-processing, the labelling of individual parameter vectors using expert knowledge, the design of various support vector machines with supervised learning as well as kernel-based approaches with semi-supervised learning, this modelling is undertaken in order to classify objects into rating classes. The results show that the rating classes assigned to bond issuers can be classified with high classification accuracy using a limited subset of input variables. This holds true for kernel-based approaches with both supervised and semi-supervised learning.
展开▼